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Introduction

Object: Lexical-semantic graphs i.e. word senses connected

with semantic relations, e.g. synonyms and hypernyms
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Introduction

Key motivation behind this research

Dissertation presents methods for joining:

precise and interpretable manually created lexical-semantic
graphs with low coverage, e.g.:

taxonomies,
WordNets,
...

noisy and non-interpretable automatically induced from text
distributional lexical representations with high coverage, e.g.:

distributional thesauri,
word embeddings,
...
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Introduction

Proposed methods and their interrelations
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Introduction

Goals of the dissertation

Development of methods and algorithms for ...

1 induction of lexical-semantic graphs, e.g. word senses and
semantic relations,

2 making the induced senses interpretable,

3 linking word senses of manually and automatically created
lexical-semantic graphs,

4 disambiguation in context with respect to the induced sense
representations,

5 vectorization of lexical semantic-graphs for the use in various
applications.

8 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Introduction

Goals of the dissertation

Development of methods and algorithms for ...

1 induction of lexical-semantic graphs, e.g. word senses and
semantic relations,

2 making the induced senses interpretable,

3 linking word senses of manually and automatically created
lexical-semantic graphs,

4 disambiguation in context with respect to the induced sense
representations,

5 vectorization of lexical semantic-graphs for the use in various
applications.

8 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Introduction

Goals of the dissertation

Development of methods and algorithms for ...

1 induction of lexical-semantic graphs, e.g. word senses and
semantic relations,

2 making the induced senses interpretable,

3 linking word senses of manually and automatically created
lexical-semantic graphs,

4 disambiguation in context with respect to the induced sense
representations,

5 vectorization of lexical semantic-graphs for the use in various
applications.

8 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Introduction

Goals of the dissertation

Development of methods and algorithms for ...

1 induction of lexical-semantic graphs, e.g. word senses and
semantic relations,

2 making the induced senses interpretable,

3 linking word senses of manually and automatically created
lexical-semantic graphs,

4 disambiguation in context with respect to the induced sense
representations,

5 vectorization of lexical semantic-graphs for the use in various
applications.

8 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Introduction

History of research behind this dissertation

History

Timeline:

The publication range from 2016 until 2023

The research work started February 2015
Dissertation preparation ended in February 2024.

Thesis was prepared at Skoltech based on publications
prepared at:

Technical University of Darmstadt (TUDA): 2015-2016,
University of Hamburg (UHH): 2017-2019,
Skolkovo Institute of Science and Technology (Skoltech):
2019-2023,
Artificial Intelligence Research Institute (AIRI): 2023.
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Introduction

The scope of dissertation is covered in 42 publications

5 papers are published in CORE A*
conferences [3, 5, 9, 10, 13];
6 papers are published in CORE A conferences [1, 2, 4, 7, 16];
5 articles are published in in Q1 journals [6, 8, 11, 12, 15];
1 paper is published in CORE A* conference student
track [28];
1 paper is published in CORE A conference demo track [18];
5 papers is published at CORE B
conference [20, 26, 19, 27, 29];
11 papers indexed by Scopus published in proceedings of the
main volumes of conferences
[22, 23, 24, 25, 30, 31, 32, 33, 34, 40, 41];
8 papers indexed by Scopus published in workshops
co-located with top conferences (CORE A*/A)
[35, 17, 21, 36, 37, 38, 39, 42]. 10 / 107
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Introduction

Selected 14 publications

The defence and thesis summary is based on 14 publications
of these 42 overall published works.

10 first-tier publications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and

4 second-tier publications [17, 18, 19, 20].
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Introduction

Research was presented at various international venues
1 ACL-2019 [CORE A*] [3, 5, 28, 36, 13]: The 57th Annual Meeting of

the Association for Computational Linguistics, (Florence, Italy)

2 ACL-2018 [CORE A*] [10]: The 56th Annual Meeting of the Association
for Computational Linguistics (Melbourne, Australia)

3 ACL-2017 [CORE A*] [9]: The 55th Annual Meeting of the Association
for Computational Linguistics (Vancouver, Canada)

4 ACL-2016 [CORE A*] [17]: The 54th Annual Meeting of the Association
for Computational Linguistics (Berlin, Germany)

5 IJCNLP-ACL-2021 [CORE A*] [35]: The Joint Conference of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing
(Bankok, Thailand)

6 COLING-2022 [CORE A] [42]: The 29th International Conference on.
Computational Linguistics (Gyeongju, Republic of Korea)

7 COLING-2020 [CORE A] [2, 14]: The 28th International Conference on
Computational Linguistics, (Barcelona, Spain)

8 EACL-2017 [CORE A] [1, 4, 16, 39]: The 15th Conference of the
European Chapter of the ACL (Valencia, Spain) [1]
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Introduction

Research was presented at various international venues
9 EMNLP-2017 [CORE A] [18]: The 2017 Conference on Empirical

Methods in Natural Language Processing (Copenhagen, Denmark)

10 ISWC-2016 [CORE A] [7]: The 15th International Semantic Web
Conference, (Kobe, Japan)

11 NAACL-2019 [CORE A] [37, 38]: 2019 Annual Conference of the North
American Chapter of the Association for Computational Linguistics
(Minneapolis, Minnesota, USA)

12 NAACL-2016 [CORE A] [21]: The 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (San Diego, California, USA)

13 AACL-2022 [CORE B] [40]: The 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 12th
International Joint Conference on Natural Language Processing (Taipei,
Taiwan)

14 LREC-2020 [CORE B] [20]: The 12th Language Resources and
Evaluation Conference, (Marseille, France)

15 LREC-2018 [CORE B] [26, 27, 19]: The 11th International Conference
on Language Resources and Evaluation (LREC 2018), (Miyazaki, Japan),
European Language Resources Association (ELRA), May 2018. 13 / 107
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Research was presented at various international venues
16 LREC-2016 [CORE B] [29]: The 10th International Conference on

Language Resources and Evaluation (LREC’16), (Portoroˇz, Slovenia).
17 PaM-2020 [Scopus] [22]: The Probability and Meaning Conference

(Gothenburg, Sweden)

18 RANLP-2019 [Scopus] [33]: The International Conference on Recent
Advances in Natural Language Processing (Varna, Bulgaria)

19 GWC-2021 [Scopus] [41]: The 11th Global Wordnet Conference
(Potchefstroom, South Africa)

20 AIST-2019 [Scopus/Q2] [32]: The 8th International Conference on
Analysis of Images, Social Networks and Texts (Kazan, Russia)

21 AIST-2017 [Scopus/Q2] [30]: The 6th International Conference on
Analysis of Images, Social Networks and Texts (Moscow, Russia)

22 Dialogue-2018 [Scopus] [25, 24]: The 24th International Conference on
Computational Linguistics and Intellectual Technologies (Moscow, Russia)

23 KONVENS-2018 [Scopus] [23]: The 14th Conference on Natural
Language Processing (Vienna, Austria).

24 KONVENS-2016 [Scopus] [31]: The 13th Conference on Natural
Language Processing, (Bochum, Germany) 14 / 107
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Graph Clustering for Sense and Frame Induction

Graph Clustering

Task Definition:

Let G = (V ,E ) be an undirected simple graph, where V is a
set of nodes and E ⊆ V 2 is a set of undirected edges.

We denote a subset of nodes C i ⊆ V as a cluster.

A graph clustering is a function Cluster : (V ,E )→ C

such that V =
⋃

C i∈C

C i .

Two classes of graph clustering exist: hard clustering
algorithms (partitionings) produce non-overlapping clusters,
i.e., C i ∩ C j = ∅ ⇐⇒ i ̸= j , ∀C i ,C j ∈ C

While fuzzy clustering permit cluster overlapping, i.e., a
node can be a member of several clusters in C .
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Graph Clustering for Sense and Frame Induction

Local-Global Graph Clustering Algorithm

Based on publications [6, 9, 10]: COLI, ACL, ACL.

Figure: The outline of the algorithm showing the local step of node sense
induction and context disambiguation, and the global step of sense graph
constructing and clustering.
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Graph Clustering for Sense and Frame Induction

Local Step: Disambiguation of Ego-Networks
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Graph Clustering for Sense and Frame Induction

Matching the meaning of the ambiguous node “building”
in the context of the sense bank2
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Contributions

Graph Clustering for Sense and Frame Induction

Local-Global Graph Clustering Algorithm: Watset

Input: graph G = (V , E),
hard clustering algorithms ClusterLocal and ClusterGlobal,
context similarity measure sim : (ctx(a), ctx(b))→ R, ∀ ctx(a), ctx(b) ⊆ V .

Output: clusters C .

1: for all u ∈ V do ▷ Local Step: Sense Induction

2: senses(u)← ∅
3: Vu ← {v ∈ V : {u, v} ∈ E} ▷ Note that u /∈ Vu

4: Eu ← {{v,w} ∈ E : v,w ∈ Vu}
5: Gu ← (Vu , Eu)

6: Cu ← ClusterLocal(Gu) ▷ Cluster the open neighborhood of u

7: for all C i
u ∈ Cu do

8: ctx(ui )← C i
u

9: senses(u)← senses(u) ∪ {ui}
10: V ←

⋃
u∈V

senses(u) ▷ Global Step: Sense Graph Nodes

11: for all û ∈ V do ▷ Local Step: Context Disambiguation

12: ĉtx(û)← ∅
13: for all v ∈ ctx(û) do

14: v̂ ← arg maxv′∈senses(v) sim(ctx(û) ∪ {u}, ctx(v′)) ▷ û is a sense of u ∈ V

15: ĉtx(û)← ĉtx(û) ∪ {v̂}
16: E ← {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)} ▷ Global Step: Sense Graph Edges

17: G ← (V, E) ▷ Global Step: Sense Graph Construction

18: C ← ClusterGlobal(G) ▷ Global Step: Sense Graph Clustering

19: C ← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} ▷ Remove the sense labels

20: return C
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11: for all û ∈ V do ▷ Local Step: Context Disambiguation
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17: G ← (V, E) ▷ Global Step: Sense Graph Construction

18: C ← ClusterGlobal(G) ▷ Global Step: Sense Graph Clustering

19: C ← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} ▷ Remove the sense labels

20: return C 22 / 107
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Graph Clustering for Sense and Frame Induction

Synsets extracted from graph of synonyms

Size Synset

2 decimal point, dot
2 wall socket, power point
3 gullet, throat, food pipe
3 CAT, computed axial tomography, CT
4 microwave meal, ready meal, TV dinner, frozen dinner
4 mock strawberry, false strawberry, gurbir, Indian strawberry
5 objective case, accusative case, oblique case, object case, accusative
5 discipline, sphere, area, domain, sector
6 radio theater, dramatized audiobook, audio theater, radio play, radio

drama, audio play
6 integrator, reconciler, consolidator, mediator, harmonizer, uniter
7 invite, motivate, entreat, ask for, incentify, ask out, encourage
7 curtail, craw, yield, riding crop, harvest, crop, hunting crop
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Semantic frames
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Graph Clustering for Sense and Frame Induction

Semantic frames extracted from graph of SVO triples
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Proposed methods and their interrelations
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Making induced senses human-interpretable

Based on publications [1] and [18]: EACL and EMNLP.

Levels of interpretability:

1 word sense inventory;
2 sense feature representation;
3 results of disambiguation in context.
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Knowledge-based sense representations are interpretable
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Making induced senses interpretable for humans
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Linking Word Sense Representations

Based on publications [7, 8]: ISWC and NLE.

Task Definition: Sense Linking

Input:

LR W : lexical resource, e.g. WordNet or BabelNet;

PCZ T = {(ji ,Rji ,Hji )}, where
ji is a sense identifier, i.e. mouse:1,
Rji the set of its semantically related senses, i.e.
Rji = {keyboard:1, computer:0, . . . },
Hji the set of its hypernym senses, i.e. {equipment:3, . . . }.

Output:

Mapping M: set of pairs of the kind (source, target) where
source ∈ T .senses is a sense of the input PCZ T and
target ∈W .senses ∪ source is the most suitable sense of W .
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Overview of the Framework for Enriching Lexical Resources
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proto-conceptualization, PCZ), which is subsequently linked to the lexical
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Linking Word Sense Representations

Input: T = {(ji , Rji
,Hji

)}, W , th, m

Output: M = (source, target)
M = ∅

for all (ji , Rji
,Hji

) ∈ T .monosemousSenses do

C(ji ) = W .getSenses(ji .lemma, ji .POS)
if |C(ji )| == 1, let C(ji ) = {c0} then

if sim(ji , c0, ∅) ≥ th then

M = M ∪ {(ji , c0)}
for step = 1; step ≤ m ; step = step + 1 do

Mstep = ∅
for all (ji , Rji

,Hji
) ∈ T .senses/M.senses do

C(ji ) = W .getSenses(ji .lemma, ji .POS)
for all ck ∈ C(ji ) do

rank(ck ) = sim(ji , ck ,M)

if rank(ck ) has a single top value for ct then

if rank(ct ) ≥ th then

Mstep = Mstep ∪ {(ji , ct )}
M = M ∪ Mstep

for all (ji , Rji
,Hji

) ∈ T .senses/M.senses do

M = M ∪ {(ji , ji )}
return M
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Example of Linked Word Sense Representations

WordNet ID PCZ ID PCZ Related Terms PCZ Context Clues

mouse:n:1 mouse:0 rat:0, rodent:0,
monkey:0, ...

rat:conj and, gray:amod,
...

mouse:n:4 mouse:1 keyboard:1,
computer:0, printer:0
...

click:-prep of, click:-nn,
....

keyboard:n:1 keyboard:0 piano:1, synthesizer:2,
organ:0 ...

play:-dobj, electric:amod,
..

keyboard:n:1 keyboard:1 keypad:0, mouse:1,
screen:1 ...

computer, qwerty:amod
...
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Proposed methods and their interrelations
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Word Sense Embeddings

Based on publications [17, 20]: ReprLearn @ ACL and LREC.

Task formulation

Input:
Set of word vectors of an ambiguous vocabulary V : ∀v ∈ V
∃v ∈ Rd , where d is dimensionality of vector space.

Output:
Word sense inventory S : ∀v ∈ V ∃S = {s1, ..., sk} : si ⊂ V ,
where k is the number of senses of word v .
Word sense vectors: ∀si ∃si ∈ Rd
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“SenseGram” Word Sense Embeddings Method
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Standard ego-network from distributionally similar words

42 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Contributions

Word Sense Embeddings

Graph-based Word Sense Induction (WSI)

input : T – word similarity graph, N – ego-network size, n – ego-network
connectivity, k – minimum cluster size

output: for each term t ∈ T , a clustering St of its N most similar terms

1 foreach t ∈ T do
2 V ← N most similar terms of t from T
3 G ← graph with V as nodes and no edges E

4 foreach v ∈ V do
5 V ′ ← n most similar terms of v from T
6 foreach v ′ ∈ V ′ do
7 if v ′ ∈ V then add edge (v , v ′) to E
8 end

9 end
10 St ← ChineseWhispers(G)
11 St ← {s ∈ St : |s| ≥ k}

12 end
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Vector arithmetic for sense induction

1 Get the neighbors of a target word, e.g. “bank”:
1 lender
2 river
3 citybank
4 slope
5 ...

2 Get similar to “bank” and dissimilar to “lender”:
1 river
2 slope
3 land
4 ...

3 Compute distances to “lender” and “river”.
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Word Sense Embeddings

Graph-vector sense induction

1 For i-th neighbor of the target word w among k neighbors:
1 Get a pair of opposite words for the wi neighbor: (wj ,wk)

For each wi a (node, anti-node) pair is computed
For each wi compute δi = w − wi .
Anti-node is most similar neighbor of w to δi

2 Add them as nodes: V = V ∪ {wj ,wk}
3 Remember the pair as an anti-edge: A = A ∪ (wj ,wk)

2 Build an ego network G = (V ,E ) of the word w :

1 E are computed based on word similarities;
2 E are pruned based on the anti-edge constraints: E = E ∖ A.

3 Cluster the ego network of the word w .

4 Find cluster labels by finding the central nodes in a cluster.
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Word Sense Embeddings

Graph-vector sense induction

Get the neighbors of a target word, e.g. “java”:
1 Python
2 Borneo
3 C++
4 Sumatra
5 Arabica
6 Robusta
7 Ruby
8 JavaScript
9 Bali
10 ...
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Word Sense Embeddings

Graph-vector sense induction

Get the neighbors of a target word, e.g. “java”:
1 Python ̸= Borneo
2 Borneo ̸= Scala
3 C++ ̸= Borneo
4 Sumatra ̸= highway
5 Arabica ̸= Python
6 Robusta ̸= Python
7 Ruby ̸= Arabica
8 Bali ̸= North

Nodes:
1 Python
2 Borneo
3 C++
4 Arabica
5 Robusta
6 Ruby
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Sense induction example (Ruby)
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Word Sense Embeddings

Get Sense Embeddings by pooling of word vectors:

si =

∑
w∈St γi (wk)vecw (wk)∑

s∈St γi (wk)
.

Word Sense Disambiguation:

s∗ = argmax
i

sim(si ,C ) = argmax
i

c̄w · si
∥c̄w∥ · ∥si∥

,

where c̄w = k−1
k∑

i=1

vecw (ci ).

Knowledge-Free Labelling of Induced Sense Clusters:
keyness(v) = |{(wi ,wi ) : (wi ,wi ) ∈ E ∧ (v = wi ∨ v = wi )}|,
.. is number of anti-edges among words in this cluster.
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Sense embeddings using retrofitting

Neighbours of Word and Sense Vectors

Vector Nearest Neighbors

table tray, bottom, diagram, bucket, brackets, stack, basket,
list, parenthesis, cup, saucer, pile, playfield, bracket, pot,
drop-down, cue, plate

table#0 leftmost#0, column#1, tableau#1, indent#1,
bracket#3, pointer#0, footer#1, cursor#1, diagram#0,
grid#0

table#1 pile#1, stool#1, tray#0, basket#0, bowl#1,
bucket#0, box#0, cage#0, saucer#3, mirror#1,
pan#1, lid#0
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Word Sense Embeddings

Keywords and sense clusters for words “mouse” and
“apple”
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Node Embeddings of Lexical-Semantic Graphs

Outline

1 Introduction

2 Contributions
Graph Clustering for Sense and Frame Induction
Unsupervised Interpretable Word Sense Disambiguation
Linking Word Sense Representations
Word Sense Embeddings
Node Embeddings of Lexical-Semantic Graphs
Hypernymy Extraction Methods

3 Conclusion

4 Appendix: Hypernymy Extraction and Semantic Relations
Prediction of Hypernym Embeddings
Extracting of Hypernyms via Sense Graph Clustering
Taxonomy Enrichment using Hyperbolic Embeddings
Lexical Substitution and Analysis of Semantic Relations
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Proposed methods and their interrelations

Known
as
one
of
largest
cats,
jaguar
is
know
to
be
...

puma,
cheetah,
cougar,
...

jaguar
→
car


apple

→

fruit

cheetah
→
animal

...

jaguar_(animal)

The jaguar is a compact and muscular
animal. It is the largest cat native to the
Americas and the third largest in the world
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Word
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Graph
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Word
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Disambiguation Lexical
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Graph
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Word
Sense
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Text
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Graph-based similarity measures

Based on publication [3]: ACL.

Introduction

Graph node similarity measures sim : V × V → R on pairs
of nodes V of a graph G = (V ,E ):

travel time,
community,
knowledge graph based semantic distances,
...

Similarity sij of cup.n.01 and mug.n.01 in WordNet is
1

4
:

cup → container ← vessel ← drinking vessel ← mug.

Computing directly on the graph can be prohibitively
computationally expensive.

57 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Contributions

Node Embeddings of Lexical-Semantic Graphs

Graph-based similarity measures

Based on publication [3]: ACL.

Introduction

Graph node similarity measures sim : V × V → R on pairs
of nodes V of a graph G = (V ,E ):

travel time,
community,
knowledge graph based semantic distances,
...

Similarity sij of cup.n.01 and mug.n.01 in WordNet is
1

4
:

cup → container ← vessel ← drinking vessel ← mug.

Computing directly on the graph can be prohibitively
computationally expensive.

57 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Contributions

Node Embeddings of Lexical-Semantic Graphs

Graph-based similarity measures

Based on publication [3]: ACL.

Introduction

Graph node similarity measures sim : V × V → R on pairs
of nodes V of a graph G = (V ,E ):

travel time,
community,
knowledge graph based semantic distances,
...

Similarity sij of cup.n.01 and mug.n.01 in WordNet is
1

4
:

cup → container ← vessel ← drinking vessel ← mug.

Computing directly on the graph can be prohibitively
computationally expensive.

57 / 107



Methods and Algorithms for Lexical-Semantic Graphs

Contributions

Node Embeddings of Lexical-Semantic Graphs

Node Embeddings of Lexical-Semantic Graphs

The path2vec model preserves both global and local relations
between nodes by minimizing

L =
∑

(vi ,vj )∈B

((v⊤i vj − sij)
2 − α(v⊤i vn + v⊤j vm)),

sij = sim(vi , vj) is the value of a ‘gold’ similarity measure
between a pair of nodes vi ;

vj , vi and vj are the embeddings of the first and the second
node, B is a training batch;

α is a regularization coefficient.
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Node Embeddings of Lexical-Semantic Graphs

Leackock-Chodorow: sim(wi ,wj) =
depth(lcs(wi ,wj)

depth(wi ) + depth(wj)
,

lcs - lowest common subsumer in taxonomy.

Wu-Palmer: sim(wi ,wj) = − log pathlen(wi ,wj).

30
40

23.4
0.713
0.007
0.007
0.007

Computation time, sec.

Leacock-Chodorow (WordNet) 
Wu-Palmer (WordNet)

Shortest paths (WordNet)
FSE embeddings

Leacock-Chodorow (path2vec) 
Wu-Palmer (path2vec) 

Shortest paths (path2vec) 

0 10 20 30 40

Tested on WordNet, DBpedia, and Freebase graphs.
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Proposed methods and their interrelations
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Prediction of Hypernym Embeddings

Hypernymy represent hierarchical relations between terms:

(apple, is-a, fruit): apple = hyponym, fruit = hypernym;
(jaguar, is-a, animal).

Baseline approach [43]. A projection matrix Φ∗ is obtained:

given vectors x⃗ and y⃗ representing hyponym and hypernym
a square matrix Φ∗ is fit
on the training set of positive pairs P:

Φ∗ = argmin
Φ

1

|P|
∑

(x⃗,y⃗)∈P

∥x⃗Φ− y⃗∥2 +λR,
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Hypernymy Extraction via regularized Projection Learning

Asymmetric Regularization. Enforces the asymmetry:

R =
1

|P|
∑

(x⃗ , )∈P

(x⃗ΦΦ · x⃗)2.

Neighbor Regularization. Semantically related words z⃗ :

R =
1

|N |
∑

(x⃗ ,z⃗)∈N

(x⃗ΦΦ · z⃗)2.

Regularizers without Re-Projection. The neighbor
regularizer:

R =
1

|N |
∑

(x⃗ ,z⃗)∈N

(x⃗Φ · z⃗)2.
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Extracting of Hypernyms via Sense Graph Clustering

Based on publication [19].
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Figure: Sense-aware distributional semantic classes are induced from a
text corpus and then used to filter noisy hypernyms database.
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Extracting of Hypernyms via Sense Graph Clustering

ID: Word
Sense, s ∈ S

Local Sense Cluster: Related Senses, N (s) ⊂ S Hypernyms,
H(s) ⊂ S

mango#0 peach#1, grape#0, plum#0, apple#0,
apricot#0, watermelon#1, banana#1,
coconut#0, pear#0, fig#0, melon#0,
mangosteen#0, ...

fruit#0,
food#0, ...

apple#0 mango#0, pineapple#0, banana#1, melon#0,
grape#0, peach#1, watermelon#1, apricot#0,
cranberry#0, pumpkin#0, mangosteen#0, ...

fruit#0,
crop#0, ...

Java#1 C#4, Python#3, Apache#3, Ruby#6, Flash#1,
C++#0, SQL#0, ASP#2, Visual Basic#1,
CSS#0, Delphi#2, MySQL#0, Excel#0,
Pascal#0, ...

programming
language#3,
language#0, ...

Python#3 PHP#0, Pascal#0, Java#1, SQL#0, Visual
Basic#1, C++#0, JavaScript#0, Apache#3,
Haskell#5, .NET#1, C#4, SQL Server#0, ...

language#0,
technology#0,
...

Table: Induced senses representing “fruits” and “programming language”.
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Extracting of Hypernyms via Sense Graph Clustering

Global Sense Cluster: Semantic Class, c ⊂ S Hypernyms,
H(c) ⊂ S

peach#1, banana#1, pineapple#0, berry#0, blackberry#0,
grapefruit#0, strawberry#0, blueberry#0, fruit#0, grape#0,
melon#0, orange#0, pear#0, plum#0, raspberry#0,
watermelon#0, apple#0, apricot#0, watermelon#0,
pumpkin#0, berry#0, mangosteen#0, ...

vegetable#0,
fruit#0, crop#0,
ingredient#0,
food#0, ·

C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pascal#0,
Ruby#6, PHP#0, Ada#1, Oracle#3, Python#3, Apache#3,
Visual Basic#1, ASP#2, Delphi#2, SQL Server#0,
CSS#0, AJAX#0, JavaScript#0, SQL Server#0, Apache#3,
Delphi#2, Haskell#5, .NET#1, CSS#0, ...

programming
language#3,
technology#0,
language#0,
format#2, app#0

Table: Sample of the induced semantic classes representing “fruits” and
“programming language” semantic classes.
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Euclidian vs Hyperbolic Geometry

Image source: https://www.h-its.org/projects/
comparing-hyperbolic-and-euclidean-geometry
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Taxonomy Enrichment using Hyperbolic Embeddings

Two types of hypernym-hyponym distance measures

Co-hyponyms: Distance between two terms u, v ∈ Rd in
Euclidean space:

d(u, v) = 1− u · v
|u||v|

,

Skip-gram word embeddings are used

Hypernyms: Distance between two terms u, v ∈ Bd for a
d-dimensional Poincaré Ball model:

d(u, v) = arcosh
(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
.

Poincaré embeddings are trained on extracted from text IS-A
relations or WordNet.
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Taxonomy Enrichment using Hyperbolic Embeddings
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Prediction of Hypernym Embeddings

Based on publications [4].

Introduction

Hypernymy represent hierarchical relations between terms:

(apple, is-a, fruit): apple = hyponym, fruit = hypernym;
(jaguar, is-a, animal).

Baseline approach [43]. A projection matrix Φ∗ is obtained:

given vectors x⃗ and y⃗ representing hyponym and hypernym
a square matrix Φ∗ is fit
on the training set of positive pairs P:

Φ∗ = argmin
Φ

1

|P|
∑

(x⃗,y⃗)∈P

∥x⃗Φ− y⃗∥2 ,
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Prediction of Hypernym Embeddings

Hypernymy extraction via regularized projection learning.

Linguistic Constraints via Regularization

Φ∗ = argmin
Φ

1

|P|
∑

(x⃗ ,y⃗)∈P

∥x⃗Φ− y⃗∥2 + λR,

Asymmetric Regularization. Enforces the asymmetry: the
same transformation to the predicted hypernym should not
provide a vector similar to the initial hyponym:

R =
1

|P|
∑

(x⃗ , )∈P

(x⃗ΦΦ · x⃗)2.
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Prediction of Hypernym Embeddings

Hypernymy extraction via regularized projection learning.

Neighbor Regularization. Negative sampling by explicitly
providing the examples of semantically related words z⃗ of the
hyponym x⃗ : penalizes the model to produce similar vectors:

R =
1

|N |
∑

(x⃗ ,z⃗)∈N

(x⃗ΦΦ · z⃗)2.

We use synonyms of hyponyms as N
Regularizers without Re-Projection. The neighbor
regularizer:

R =
1

|N |
∑

(x⃗ ,z⃗)∈N

(x⃗Φ · z⃗)2.
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Prediction of Hypernym Embeddings

Performance of our approach for Russian for k = 20
clusters compared to Fu et al. [43].

Model hit@1 hit@5 hit@10 AUC
Baseline 0.209 0.303 0.323 2.665
Asym. Reg. x⃗Φ 0.213 0.300 0.322 2.659
Asym. Reg. x⃗ΦΦ 0.212 0.312 0.334 2.743
Neig. Reg. x⃗Φ 0.214 0.304 0.325 2.685
Neig. Reg. x⃗ΦΦ 0.211 0.315 0.338 2.768
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Induced Senses with Hypernymy Labels

ID: Word
Sense, s ∈ S

Local Sense Cluster: Related Senses, N (s) ⊂ S Hypernyms,
H(s) ⊂ S

mango#0 peach#1, grape#0, plum#0, apple#0,
apricot#0, watermelon#1, banana#1,
coconut#0, pear#0, fig#0, melon#0,
mangosteen#0, ...

fruit#0,
food#0, ...

apple#0 mango#0, pineapple#0, banana#1, melon#0,
grape#0, peach#1, watermelon#1, apricot#0,
cranberry#0, pumpkin#0, mangosteen#0, ...

fruit#0,
crop#0, ...

Java#1 C#4, Python#3, Apache#3, Ruby#6, Flash#1,
C++#0, SQL#0, ASP#2, Visual Basic#1,
CSS#0, Delphi#2, MySQL#0, Excel#0,
Pascal#0, ...

programming
language#3,
language#0, ...

Python#3 PHP#0, Pascal#0, Java#1, SQL#0, Visual
Basic#1, C++#0, JavaScript#0, Apache#3,
Haskell#5, .NET#1, C#4, SQL Server#0, ...

language#0,
technology#0,
...

Table: Induced senses representing “fruits” and “programming language”.
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Extracting of Hypernyms via Sense Graph Clustering

Representing Senses with Ego Networks

1 Represent each induced sense s by a second-order ego
network consisting of related senses R(s) of the ego sense s:

{sj : (sj ∈ N (s)) ∨ (si ∈ N (s) ∧ sj ∈ N (si ))}.

2 Edge weight Ws(si , sj) between two senses is equal to a
distributional semantic relatedness score between si and sj .

3 Cluster each ego network and discard networks for which the
cluster containing the target sense s contains less than 80%
nodes of the respective network to ensure semantic coherence.
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Extracting of Hypernyms via Sense Graph Clustering

Global Sense Graph Construction

1 Compute weights of the edges of the global graph by counting
the number of co-occurrences of the edge in ego networks:

W(si , sj) =
∑
s∈S
Ws(si , sj).

2 To filter noisy edges and re-scale weights:

W(si , sj) =

{
logW(si , sj) if W(si , sj) ≥ t,

0 otherwise.
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Induced Global Semantic Classes

Global Sense Cluster: Semantic Class, c ⊂ S Hypernyms,
H(c) ⊂ S

peach#1, banana#1, pineapple#0, berry#0, blackberry#0,
grapefruit#0, strawberry#0, blueberry#0, fruit#0, grape#0,
melon#0, orange#0, pear#0, plum#0, raspberry#0,
watermelon#0, apple#0, apricot#0, watermelon#0,
pumpkin#0, berry#0, mangosteen#0, ...

vegetable#0,
fruit#0, crop#0,
ingredient#0,
food#0, ·

C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pascal#0,
Ruby#6, PHP#0, Ada#1, Oracle#3, Python#3, Apache#3,
Visual Basic#1, ASP#2, Delphi#2, SQL Server#0,
CSS#0, AJAX#0, JavaScript#0, SQL Server#0, Apache#3,
Delphi#2, Haskell#5, .NET#1, CSS#0, ...

programming
language#3,
technology#0,
language#0,
format#2, app#0

Table: Sample of the induced semantic classes representing “fruits” and
“programming language” semantic classes.
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Extracting of Hypernyms via Sense Graph Clustering

Labelling of the Induced Semantic Classes

Clustering of Word Senses

Fine-grained: 208,871 word senses ⇒ 1,870 semantic classes,

Coarse-grained: 18,028 word senses ⇒ 734 semantic classes.

Denoising Hypernyms using the Distributional Semantic Classes

Sense cluster is labeled with top 5 common hypernyms.

For labeling we used the tf–idf weighting:

tf–idf(h) =
∑
s∈c
H(s) · log |S|

|h ∈ H(s) : ∀s ∈ S|
,

where
∑
s∈c
H(s) is a sum of weights for all hypernyms s.
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Extracting of Hypernyms via Sense Graph Clustering

An Illustration of Hypernymy Extraction and Correction

Post-processing of hypernymy relations using distributionally
induced semantic classes, represented by clusters of induced
word senses labeled with noisy hypernyms.

Wrong hypernyms outside the cluster labels are removed,
while the missing ones not present in the noisy database of
hypernyms are added.
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Based on publication [5].

Introduction

Given a noisy taxonomic graph G = (V ,E ) with errors:

Absent edges: Eabs = {(vi , vj) : vi is-a vj ∧ (vi , vj) /∈ E}.
Special case is orphan nodes: Vorh = {vi ∈ V : ∄(vi , vj) ∈ E}.
Wrong edges: Ewrg = {(vi , vj) : vi not-is-a vj ∧ (vi , vj) ∈ E}.

Build a graph G ′ = (V ,E ′) correcting the two edge errors by:

Adding absent edges: E = E ∪ {Eabs} and
Removing wrong edges: E = E ∖ Ewrg

For orphan nodes only adding edges is needed
For connected nodes either

Adding absent additional edge is needed or
Relocation i.e. a combination of removing wrong with adding
absent edge(s) is needed.
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Two types of hypernym-hyponym distance measures

Co-hyponyms: Distance between two terms u, v ∈ Rd in
Euclidean space:

d(u, v) = 1− u · v
|u||v|

,

Skip-gram word embeddings ar used

Hypernyms: Distance between two terms u, v ∈ Bd for a
d-dimensional Poincaré Ball model:

d(u, v) = arcosh
(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
.

Poincaré embeddings are trained on extracted from text IS-A
relations or WordNet.
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Relocation of Outlier Terms

1 Poincaré embeddings are used to compute ranks between
every child-parent of the existing taxonomy.

2 Hypernym-hyponym relationships with a rank larger than the
mean of all ranks are removed.

3 Disconnected components that have children are re-connected
to the most similar parent in the taxonomy or to the
taxonomy root.

4 Previously or now disconnected isolated nodes are subject to
orphan attachment.

5 Compute distance to the closest co-hyponym for every node
to identify and relocate outliers.
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Attachment of Orphan Terms

1 Attach orphans by computing the rank between every orphan
and the most similar node in the taxonomy.

2 Only hypernym-hyponym relationships with a rank lower or
equal to the mean of all stored ranks are added to the
taxonomy.

3 For Euclidean embeddings, a link is added between the parent
of the most similar co-hyponym and the orphan.
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Word Parent patterns Parent after
refinement

Gold parent Closest neighbors

second language
acquisition

— linguistics linguistics applied linguistics,
semantics, linguistics

botany — genetics plant science,
ecology

genetics, evolutionary
ecology, animal science

sweet potatoes — vegetables vegetables vegetables, side dishes,
fruit

wastewater water waste waste marine pollution, waste,
pollutant

water waste, natural
resources

natural resources aquatic
environment

continental shelf,
management of resources

international
relations

sociology, analysis,
humanities

humanities political science economics, economic
theory, geography

Table: Example words with respective parent(s) in the input taxonomy
constructed using Hearst’ patterns approach and after refinement using
our domain-specfic Poincaré embeddings, as well as the word’s closest
three neighbors (incl. orphans) in embeddings.
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Lexical Substitution and Analysis of Semantic Relations

Given a sentence S composed of a context C and a target
word T find lexical substitutes: words/phrases which can be
used to replace T without changing meaning of S .

Examples:

“We were not able to travel in the weather, and there was no
phone.” → telephone
“What happened to the big, new garbage can at Church and
Chambers Streets?” → bin, disposal, container
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Lexical Substitution and Analysis of Semantic Relations

Lexical Substitution with LMs

1 Build our substitute probability estimators using LMs/MLMs
P(s|C ): ELMo [44], BERT [45], XLNet [46], etc.

2 Combine a distribution provided by a context-based substitute
probability estimator P(s|C ) with a distribution based on the
proximity of possible substitutes to the target:

P(s|T ) ∝ exp(
⟨embs , embT ⟩

T
).

3 The final distribution is obtained by the formula:

P(s|C ,T ) ∝ P(s|C )P(s|T )

P(s)β
.
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Based on publication [2].
Synonym Co Hyponym Co Hyponym 3 Target

Transitive 
Hypernym

Transitive 
Hyponym

Direct 
Hypernym

Direct 
Hyponym

Unknown Word
Unknown 
Relation

GOLD telephone (5)
OOC phone telephone phones cellphone fone videophone handset telephones p990i cell-phone
XLNet electricity internet phone power telephone car water communication radio tv
XLNet+embs phone telephone phones cellphone internet radio electricity iphone car computer

GOLD bin (4) disposal (1) container (1)
OOC can could should would will must might to may ll
XLNet can dump bin truck disposal pit heap pile container stand
XLNet+embs can could will bin cannot dump may truck disposal stand

We were not able to travel in the weather , and there was no phone .

What happened to the big , new garbage can at Church and Chambers Streets ?

Types of semantic relations: synonym co-hyponym co-hyponym 3 target

direct hypernym transitive hypernym

direct hyponym transitive hyponym unknown-relation unknown-word

Figure: Examples of top substitutes provided by annotators (GOLD), the
baseline (OOC), and two presented models (XLNet and XLNet+embs).
The target word in each sentence is in bold, true positives are in bold
also. The weights of gold substitutes are given in brackets. Each
substitute is colored according to its lexical-semantic relation to the
target word.
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Figure: Proportions of substitutes related to the target by various
semantic relations according to WordNet.
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